Структурная схема автоматизированных систем контроля и управления. Структура и структурные схемы асу

СТРУКТУРНАЯ СХЕМА И ПРИНЦИП РАБОТЫ АСУ

Структурная схема линии приготовления маргарина, на которой показан её состав, включая исполнительные устройства и функционально важные элементы конструкции, приведена на рис. 1.

Рис. 1.

Процесс начинается с набора продукта на жировые весы из баков дезодорированного жира по 12 линиям и на водно-молочные весы по 4 линиям. Оператор вводит рецепты для обоих весов, то есть указывает, по какой линии и какое количество продукта должно быть набрано на весы. После того как набор на весы закончен, происходит последовательная перекачка жировых и водно-молочных компонентов в смеситель. Перекачка возможна только при пустом принимающем баке. Перекачка идёт до опорожнения весов. После этого начинается набор на весы другой партии компонентов. В смесителях происходят подогрев, равномерное перемешивание продукции и перекачка её в рабочий бак. Если в ходе перекачки уровень продукта в рабочем баке достигает 95%, процесс перекачки приостанавливается. Из рабочего бака продукт с помощью насоса высокого давления подаётся через охладитель, где происходит кристаллизация маргарина, и декристаллизатор на фасовочную машину.

СОСТАВЛЕНИЕ ФУНКЦИОНАЛЬНОЙ СХЕМЫ И ОПИСАНИЕ ОСНОВНЫХ ФУНКЦИОНАЛЬНЫХ УЗЛОВ АСУ

Рис. 2.

По структурным схемам (рис.1, 2) составим функциональную схему АСУ.


Рис. 3.

МП - микропроцессор; ЦАП - цифро-аналоговый преобразователь; К - клапан; Н - насос; СМ - смеситель; РБ - рабочий бак; ДУ - датчик уровня; ДД- датчик давления; ДТ- датчик температуры; ДВ - датчик веса; ДВЛ - датчик влажности; КМ - коммутатор; АЦП - аналого-цифровой преобразователь.

Рис. 4.

Используется в качестве устройства контроля за ТП.

Центральный процессор:

AMD Athlon 64 X2 6000+ BOX, ядро Windsor, частота 3000 МГц, Socket AM2, кеш L2 2048 Кб. Средний срок службы - 100000 ч.

Материнская плата:

Gigabyte GA-MA790X-DS4, AMD 790X, PCIe, PCI, 4x DDR2533/667/800, SLI/CrossFire. Средний срок службы - 70080 ч.

Жесткий диск: Seagate Barracuda ST3500320AS 500 Гб, SATA II, 7200 об./мин, 16МБ. Средний срок службы - 70080 ч.

Жидкокристаллический монитор:

Монитор 18,5" LCD Acer E-Machines E190HQVB, 16:9 HD, 5ms, 5000:1. Средний срок службы - 60000 ч.

2) Микропроцессор SIMATIC S7-300 - CPU 315-2 DP - PROFIBUS

Используется в качестве модуля центрального процессора.

Фирма: Siemens

Рис. 5. Микропроцессор SIMATIC S7-300 - CPU 315-2 DP - PROFIBUS

Характеристики:

1. Центральный процессор для выполнения программ среднего и большого объема.

2. Высокая производительность.

3. Встроенный интерфейс ведущего/ ведомого устройства PROFIBUS DP, обслуживание систем распределенного ввода-вывода на основе PROFIBUS DP; поддержка интерфейса MPI.

4. Рабочая встроенная память объемом 128 Кбайт, RAM (приблизительно 43 K инструкций); загружаемая память - ММС 8 МБайт.

5. Гибкие возможности расширения; подключение до 32 модулей S7-300 (4-рядная конфигурация).

6. Входное напряжение: 20.4 - 28.8 В; потребляемый ток: от источника питания - 800 мА, потребляемая мощность - 2,5 Вт.

7. ЦПУ/время выполнения: логических операций - 0,1 мкс, операций со словами - 0,2 мкс, арифметических операций с фиксированной точкой - 2 мкс, арифметических операций с плавающей точкой - 3 мкс.

8. Встроенные коммуникационные функции: PG/OP функции связи, обмен глобальными данными через MPI, функции стандартной S7 связи, S7 функции связи (только сервер)

9. Системные функции: центральный процессор поддерживает широкий спектр функций диагностики, настройки параметров, синхронизации, аварийной сигнализации, измерения временных промежутков и т.д.

10. Средний срок службы - 70080 ч.

3) Высокоскоростной ЦАП/АЦП c поддержкой SM 321

Используется в качестве преобразователя сигналов из аналогового в цифровой и наоборот.

Фирма: Siemens

Рис. 6. Высокоскоростной ЦАП/АЦП

Характеристики:

1. Кол-во входов - 32

2. Номинальное входное напряжение - DC 24V

3. Поканально программируемый коэффициент усиления

4. Автокалибровка

5. Общий потребляемый ток - 35 mА

6. Потребляемая мощность - 5,5W

7. Программируемая схема запуска

8. 16-разрядный счётчик (10 МГц)

9. Выходное напряжение 10 В

10. Средний срок службы - не менее 87600 ч.

4) Датчик температуры с унифицированным выходным сигналом Метран-280-1

Используется в качестве измерителя температуры смеси.

Фирма: Метран

Рис. 7. Датчик температуры

Характеристики:

1. Диапазон преобразуемых температур: -50…200 °С

2. Выходной сигнал 4-20 мА/HART

3. Цифровая передача информации по HART-протоколу

4. Дистанционные управление и диагностика

5. Гальваническая развязка входа от выхода

6. Повышенная защита от электромагнитных помех

7. Минимальный поддиапазон измерений: 25 °С

8. Электронный фильтр 50/60 Гц

9. Питание: 18 - 42 В постоянного тока

10. Мощность: 1,0 Вт

11. Межповерочный интервал - 1года

12. Средний срок службы - не менее 43800 ч.

5) Датчик уровня Rosemount 5300

Используется в качестве измерителя уровня заполнения в смесителе.

Фирма: Метран

Рис. 8. Датчик уровня

Характеристики:

1. Измеряемые среды: жидкие и сыпучие

2. Диапазон измерений: от 0,1 до 50 м

3. Выходные сигналы: 4F20 мА с цифровым сигналом на базе протокола HART или Foundation™ Fieldbus

4. Наличие взрывозащищенного исполнении

5. Рабочая температура: до 150°C (302°F)

6. Потребление тока в режиме ожидания: 21 мА

7. Давление процесса: от 0,1 до 34,5 МПа;

8. Относительная влажность окружающей среды: до 100%

9. Степень защиты от внешних воздействий: IP 66, IP67 по ГОСТ 14254

10. Межповерочный интервал - 1 год

11. Средний срок службы - 43800 ч.

6) Датчик давления Rosemount 2088

Используется в качестве измерителя давления в рабочем баке.

Фирма: Метран

автоматический функциональный технологический маргарин

Рис. 9.

Характеристики:

1. Верхние пределы измерений от 10,34 до 27579,2 кПа

2. Основная приведенная погрешность измерений ±0,075%; ±0,1%

3. Выходные сигналы 4D20 мА/НАRТ, 1D5 В/НАRТ, 0,8D3,2 В/НАRТ

4. Перенастройка диапазонов измерений 20:1

5. Дополнительно: ЖК индикатор, кронштейны, вентильные блоки

6. Диапазон температур окружающей среды от 40 до 85°С; измеряемой среды от 40 до 121°С

7. Время отклика датчика не более 300 мс

8. Нестабильность характеристик ±0,1% от Pmax за 1 год

11. Средний срок службы - 61320 ч.

7) Датчик веса Omron-D8M

Используется в качестве измерителя веса продукта в смесителе.

Фирма: Omron

Рис. 10.

Характеристики:

2. Цифровой выход

3. Рабочий диапазон температур -10…+120°С

4. Верхний предел измерения: 60 МПа:

5. Номинальное усилие: 200 Н

6. Полная приведенная погрешность, не более: 5%

7. Максимальный потребляемый ток, не более:

8. Сопротивление мостовой схемы входное, Ом - 450±25,0

9. Сопротивление мостовой схемы выходное, Ом - 400±4,0

10. Межповерочный интервал - 2 года

11. Средний срок службы - 52560 ч.

8) Датчик влажности Omron-4000-04

Используется в качестве измерителя влажности в рабочем баке.

Фирма: Omron

Рис. 11.

Характеристики:

1. Диапазон измеряемой относительной влажности: 0 - 100%

2. Выходной сигнал - напряжение

3. Время отклика - 15 с

4. Номинальный выходной ток - 0,05мА

5. Дипазон выходного напряжения: 0,8 - 3,9В

7. Корпус SIP 1.27 мм

8. Межповерочный интервал - 2 года

9. Средний срок службы - 43800 ч.

Используется в качестве исполнительного устройства для дозирования компонентов в системе.

Фирма: КЗМЭМ

Рис. 12.

Характеристики:

1. Тип корпуса - проходной, литой (латунь)

2. Рабочее давление: 0 - 0,1МПа

3. Присоединение муфтовое

5. Потребляемая мощность - 0,15Вт

6. Число срабатываний - не менее 500000

7. Время срабатывания - не более 1 с

8. Средний срок службы - 26280 ч.

Используется в качестве устройства для перекачки компонентов в системе.

Фирма: Grundfos

Рис. 13.

Характеристики:

1. Рабочий объем от 0,12 до 0,34 см 3 /об

2. Рабочее давление до 70 МПа

3. Частота вращения от 500 до 3600 об/мин

Используется в качестве устройства для смешивания компонентов в системе.

Фирма: «Воплощение»

Рис. 14.

Характеристики:

1. Масса - не более 215 кг

2. Рабочая вместимость бака - 156 л

3. Производительность техническая - не более 950 л/ч

4. Установленная мощность - не более 3 кВт

5. Частота - 50 Гц

6. Средний срок службы - 35040 ч.

12) Бак из нержавеющей стали

Используется в качестве устройства для приготовления продукта.

Фирма: Unical

Рис. 15.

Характеристики:

1. Объем бака - 300 л

2. Максимальная рабочая температура - 120 C

3. Максимально рабочее давление - 10 бар

4. Средний срок службы - 26280 ч.

Схема является основным документом, поясняющим принцип действия и взаимодействия различных элементов, устройств или в целом систем автоматического управления. Наиболее часто используют принципиальные, функциональные структурные (функциональные) и алгоритмические структурные (структурные) типы схем. Кроме них при проектировании, монтаже, наладке и эксплуатации САУ применяют схемы соединения и подключения (монтажные).

ПРИНЦИПИАЛЬНЫЕ, ФУНКЦИОНАЛЬНЫЕ И СТРУКТУРНЫЕ СХЕМЫ

На принципиальной схеме все элементы системы изображают в соответствии с условными обозначениями во взаимосвязи между собой. Из принципиальной схемы должен быть ясен принцип ее действия и физическая природа происходящих в ней процессов. Принципиальные схемы могут быть электрическими, гидравлическими, пневматическими, кинематическими и комбинированными. На рисунке 1.19 в качестве примера представлены фрагменты принципиальной электрической и принципиальной гидравлической схем.

Элементы автоматики на принципиальных схемах следует обозначать в соответствии со стандартом. Изображение элементов должно соответствовать выключенному состоянию (обесточенному, при отсутствии избыточного давления и т.д.) всех цепей схемы и отсутствию внешних воздействий. Схема должна быть логи-

Рис. 1.19.

а - электрической, б - гидравлической

чески последовательной и читаться слева направо или сверху вниз. Каждому элементу принципиальной схемы присваивают буквенно-цифровое позиционное обозначение. Буквенное обозначение обычно представляет собой сокращенное наименование элемента, а цифровое в порядке возрастания и в определенной последовательности условно показывает нумерацию элемента, считая слева направо или сверху вниз. Для сложных схем, как правило, расшифровывают сокращенные буквенные и цифровые обозначения.

Функциональные структурные схемы отражают взаимодействие устройств, блоков, узлов и элементов автоматики в процессе их работы. Графически отдельные устройства автоматики изображают прямоугольниками, соответствующими направлению прохождения сигнала. Внутреннее содержание каждого блока не конкретизируют. Функциональное назначение блоков обозначают буквенными символами. На рисунке 1.20 в качестве примера представлена функциональная схема САУ температурой воздуха в парнике, где ОУ- объект управления (парник), ВЭ - воспринимающий элемент (датчик температуры), ПЭ - преобразующий


Рис. 1.20. Функциональная схема САУ температурой воздуха в парнике элемент (усилитель с реле на выходе), РО- регулирующий орган (электронагреватель), у -управляемая величина (температура), g-задающее воздействие (требуемая температура);/-возмущающее воздействие (влияние внешних факторов на температуру воздуха в парнике).

Алгоритмические структурные схемы показывают взаимосвязь составных частей автоматической системы и характеризуют их динамические свойства. Эти схемы разрабатывают на основе функциональных или принципиальных схем автоматики. Алгоритмическая структурная схема - наиболее удобная графическая форма представления САУ в процессе исследования ее динамических свойств. В этой схеме не учитывают физическую природу воздействий и особенности конкретной аппаратуры, но отображают лишь математическую модель процесса управления.

На структурной схеме, как и на функциональной, элементы УУ и ОУ изображают в виде прямоугольников. При этом какое-либо устройство может быть представлено несколькими звеньями (прямоугольниками) и, наоборот, несколько однотипных устройств могут быть изображены как одно звено.

Разделение САУ на элементарные звенья направленного действия выполняют в зависимости от вида математического уравнения, связывающего выходную величину с входной для каждого звена. Внутри звена (прямоугольника) указывают математическую зависимость между входной и выходной величинами. Эта зависимость может быть представлена либо формулой, либо графиком, либо таблицей. Аналогично функциональной схеме связи между звеньями изображают в виде стрелок, указывающих направление и точки приложения воздействующих величин.

Структурная схема САУ температурой воздуха в парнике представлена на рисунке 1.21. Общий вид этой схемы совпадает с функциональной схемой (см. рис. 1.20), однако внутри прямоугольников содержатся функции или графики, связывающие выходные величины каждого элемента с входными.

В качестве примера рассмотрим принцип действия принципиальной электрической схемы САУ температурой теплоносителя в


Рис. 1.21.

Рис. 1.22.

/-заслонка; 2- ИМ; 3 ~усилитель

шахтной зерносушилке (рис. 1.22) и составим для нее функциональную схему. Требуемая температура теплоносителя в зерносушилке поддерживается при помощи заслонки 7, которая, поворачиваясь, изменяет соотношение притоков горячего воздуха Q r , поступающего из топки, и холодного Q x , забираемого из атмосферы. Температуру внутри зерносушилки измеряет термодатчик R, включенный в одно их плеч измерительного моста. Заданное значение управляемой величины g (температуры) устанавливают, перемещая движок резистора - задатчика R1. Поскольку сигнал выхода с измерительного моста малой мощности, то для управления реверсивным электродвигателем 2 (ИМ) используют усилитель 3.

Когда температура теплоносителя внутри зерносушилки отклоняется от заданной, на выходе моста появляется сигнал разбаланса, который через усилитель 3 и реле К1 или К2 поступает в электродвигатель 2, включая его. От двигателя приводится в действие заслонка 7, перемещающаяся в ту или иную сторону в зависимости от знака сигнала.

Вследствие инерционности термодатчика R, и его удаленности от заслонки 7 процесс управления может продолжаться бесконечно, т. е. новый равновесный режим в системе не установится. Действительно, когда заслонка займет новое равновесное положение, температура термодатчика еще некоторое время остается прежней, вследствие чего исполнительный механизм продолжит перемещать заслонку. Далее температура в месте установки термодатчика сначала сравняется с заданной, а затем отклонится от нее в противоположную сторону, т. е. примет значение с обратным знаком. Иными словами, в системе возникнут периодические колебания, называемые автоколебаниями. Автоколебания управляемой величины (температуры) в данной системе возникают вследствие того, что двигатель останавливается не в момент достижения заслонкой требуемого положения, а с некоторым запаздыванием.

Для устранения автоколебаний или уменьшения их амплитуды применяют обратную связь (ОС), которая позволяет остановить двигатель до того, как температура теплоносителя достигнет заданного значения, поскольку после прекращения перемещения заслонки температура объекта и термодатчика приближается к заданному значению.

Обратная связь осуществляется с помощью переменного резистора Ло. с, ползунок которого механически связан с ротором электродвигателя 2 и перемещается одновременно с ним. Очевидно, что равновесие в системе наступит в тот момент, когда приращение сопротивления Л ос, возникающее вследствие передвижения ползунка, и приращение сопротивления R„ вызванное изменением температуры теплоносителя, станут равны между собой (АД, с = ДЛ,). Таким образом, электродвигатель 2 в данной системе останавливается и переходный процесс полностью прекращается в тот момент, когда отклонение температуры станет меньше зоны нечувствительности регулятора.

На функциональной схеме (рис. 1.23) зерносушилка представляет собой объект управления (030, термодатчик - воспринимающий орган (50), измерительный мост - сравнивающий элемент (СО), усилитель - усилительный элемент (УЭ ), электродвигатель - исполнительный механизм (ИМ), заслонка - регулирующий орган (РО), между валом ИМ и ползунком потенциометра - обратная связь (ОС). Здесь же/- возмущающее воздействие (температура наружного воздуха, влажность и начальная температура зерна), g- задающее воздействие (требуемая температура сушки), у - управляемая величина (фактическая температура теплоносителя), и - управляющее воздействие (теплота, поступающая в зерносушилку с теплоносителем).


Рис. 1.23.

СХЕМЫ СОЕДИНЕНИЙ ЩИТОВ, ПУЛЬТОВ УПРАВЛЕНИЯ, ВНЕШНИХ СОЕДИНЕНИЙ И ПОДКЛЮЧЕНИЙ

Схемы соединений - это схемы, на которых изображают соединения составных частей устройства или внешние соединения между отдельными устройствами. Схемы для приборов, устанавливаемых в щитах или пультах управления, разрабатывают на основе функциональных схем, принципиальных электрических схем, схем питания, а также общих видов щитов и пультов.

Общие правила выполнения схем соединений следующие:

схемы соединений разрабатывают на один щит, пульт, станцию управления;

все типы аппаратов, приборов и арматуры, предусмотренные принципиальной электрической схемой, должны быть полностью отражены на схеме соединений;

позиционное обозначение приборов и средств автоматизации и маркировку участков цепей, принятые на принципиальной электрической схеме, необходимо сохранять в схеме соединений.

Применяют три способа составления схем соединений: графический, адресный и табличный. Для адресного и табличного способа, кроме перечисленных правил, следует соблюдать еще несколько:

приборы и аппараты на схемах соединений изображают упрощенно без соблюдения масштаба в виде прямоугольников, над которыми помещают окружность, разделенную горизонтальной чертой. Цифры над чертой указывают порядковый номер устройства (рис. 1.24, цифра 8); номера присваивают попанельно слева направо и сверху вниз), а под чертой - позиционное обозначение этого изделия (например, КТЗ)

при необходимости показывают внутреннюю схему аппаратов (рис. 1.24);

Рис. 1.24.

для нескольких реле, расположенных в одном ряду, внутреннюю схему показывают только один раз, если она у них одинаковая;

выводные зажимы приборов условно изображают окружностями, внутри которых указывают их заводскую маркировку (например, 1...8 на рис. 1.24). Если у выводных зажимов аппаратов заводской маркировки нет, то их маркируют условно арабскими цифрами и указывают это в поясняющей записи;

платам, на которых размещены диоды, триоды, резисторы и т. п., присваивают только порядковый номер (его проставляют в окружности под чертой);

позиционное обозначение элементов помещают в непосредственной близости от их условного графического изображения (рис. 1.25);

Рис. 1.2

если приборы и средства автоматизации располагаются на нескольких элементах конструкции щита или пульта (крышке, задней панели, дверце), то необходимо выполнить развертку этих конструкций в одну плоскость, соблюдая взаимное размещение приборов и средств автоматизации.

Графический способ заключается в том, что на чертеже условными линиями показывают все соединения между элементами аппаратов (рис. 1.26). Этот способ применяют только для щитов и пультов, относительно мало насыщенных аппаратурой. Схемы трубных проводок выполняют только графическим способом. Если на одном щите или пульте прокладывают трубы из разного материала (стальные, медные, пластмассовые), то и условные обозначения используют различные: сплошные линии, штриховые, штриховые-пунктирные с двумя точками и т. д.

Адресный («встречный») способ состоит в том, что линии связи между отдельными элементами аппаратов, установленных на щите или пульте, не изображают. Вместо этого у места присоединения провода на каждом аппарате или элементе проставляют цифровой или буквенно-цифровой адрес того аппарата или элемента, с которым он должен быть электрически связан (позиционное обозначение соответствует принципиальной электрической схеме или порядковому номеру изделия). При таком изображении


Рис. 1.26.


Рис. 1.27.

схемы чертеж не загромождается линиями связи и легко читается (рис. 1.27). Адресный способ выполнения схем соединений - основной и наиболее распространенный.

Табличный способ применяют в двух вариантах. Для первого составляют монтажную таблицу, где указывают номера каждой электрической цепи. В свою очередь, для каждой цепи последовательно перечисляют условные буквенно-цифровые обозначения всех приборов, аппаратов и их контактов, посредством которых эти цепи соединены (табл. 1.1). Так, для цепи 7запись обозначает, что зажим 6 прибора КМ1 соединяется с зажимом 4 прибора КМ2 , который, в свою очередь, должен быть соединен с зажимом 3 устройства КТ4.

1.1. Пример таблицы соединений

Номер цепи

Соединение

КМ 1 КМ2 КТ 4 6 4 3

КМ 4 XT 1 2 293

XTI HL1 КН2 XT 2 328 1 12 307

Второй вариант заполнения таблицы соединений отличается от первого тем, что в таблицу вписывают проводники по возрастанию номеров маркировки цепей принудительных электрических схем (табл. 1.2). Направление прокладки проводов, как и для первого варианта, записывают в виде дроби. Для более четкого распознавания проводников принято использовать дополнительные обозначения. Например, перемычку, выполняемую в аппарате, обозначают буквой «п».

1.2. Пример таблицы соединения проводов

Схемы подключений служат рабочими чертежами, по которым выполняют монтаж аппаратуры автоматики, поэтому их еще называют монтажными. Схемы, показывающие внешнее подключение аппаратов, установок, щитов, пультов и т. п., выполняют на основе функциональных и принципиальных схем питания, спецификации приборов и оборудования, а также чертежей производственных помещений с расположением технологического оборудования и трубопроводов.

Схемы подключений используют при монтаже проводов, при помощи которых установку, прибор, аппарат подключают к источникам питания, щитам, пультам и т. п.

На практике применяют два способа составления схем подключений: графический и табличный. Наиболее распространен графический.

На схемах подключений при помощи условных графических обозначений показывают: отборные устройства и первичные преобразователи; щиты, пульты и местные пункты управления, контроля, сигнализации и измерения; внещитовые приборы и средства автоматизации; соединительные, протяжные и свободные коробки; электропровода и кабели, проложенные вне щитов; узлы присоединения электропроводов к приборам, аппаратам, коробкам; запорную аппаратуру и элементы для соединений и ответвлений; коммутационные зажимы, расположенные вне щитов, защитное заземление. Шкафы, пульты, отдельные приборы и аппараты условно изображают в виде прямоугольников или кружков, внутри которых помещают соответствующие подписи.

Связи одного назначения на схемах подключений показывают сплошной линией и лишь в местах присоединения к приборам, исполнительным механизмам и другим аппаратам провода разделяют с целью маркировки. На линиях связи, обозначающих провода или кабели, указывают номер провода (подключение), марку, сечение и длину проводов и кабелей (если проводка выполнена в трубе, то необходимо также привести характеристику трубы). Провода подключений и кабели изображают линиями толщиной 0,4.. .1 мм.

Схемы подключений выполняют без соблюдения масштаба в виде, удобном для пользователя. Иногда схемы подключений представляют в виде таблиц, которые выполняют отдельно на каждую секцию (или панель) щита управления (табл. 1.3).

1.3. Пример таблицы подключений

Кабель, провод

Направление проводки

Является схема управления в режимесбора данных . При этом подсоединяется к технологическому процессуспособом, выбранным инженером-технологом.

Подсоединение осуществляетсяпосредством сопряжения с объектом (УСО). Измеря-емые величиныпреобразуются в цифровую форму. Эти величины по соответст-вующим формулампреобразуются в единицы. Например, для вычис-лениятемпературы, замеряемой с помощьютермопары,можетиспользоватьсяформула T = A * U2 + B * U + C ,гдеU–напряжениенавыходетермопары;A, B и C – коэффициенты. Результатывычислений регистрируются устройствами вывода для последующего изучения технологическогопроцесса в различных условиях его прохождения. На основе этого можно построитьили уточнить математическую модель управляемого процесса.

Данный режим неоказывает прямого воздействия натехнологический процесс. Здесь нашел осторожный подход к внедрению методовуправления в АСУТП. Однако данная схема используется как одна из обязательныхподсхем управления в других более сложных схемах управлениятехнологическимипроцессами.

В данной схеме АСУТП работаетв темпе выполнения технологического процесса. Контур управления разомкнут, т.е.выходы АСУТП не связаны с органами, управляющими технологическими процессами.Управляющие воздействия осуществляются оператором-технологом ,получающимрекомендацииотЭВМ.

Все необходимыеуправляющие воздействия вычисляются ЭВМ всоответствии с моделью технологического процесса, результаты вычисленийпредоставляются оператору в печатном виде (или в виде сообщений на дисплее).Оператор управляет процессом, изменяя установки .

Регуляторыявляются средствами поддержания оптимального управления технологическимпроцессом. Оператор выполняет роль следящего и управляющего , усилиякоторого АСУТП непрерывно и безошибочно направляетнаоптимизацию выполнения технологическогопроцесса.
Основнойнедостаток этой схемы управления заключается в присутствиичеловека в цепи управления. При большом числевходных и выходных переменных такая схема управления не может применяться из-заограниченных психофизических возможностей человека. Однако управление этоготипа имеет и преимущества. Оно удовлетворяет осторожного подхода кновым методам управления.

Режим советчика обеспечивает хорошие возможности дляпроверки новых моделей технологических процессов. АСУТП может отслеживатьвозникновение аварийных ситуаций, так чтооператор имеет возможность уделять больше внимания работе с установками, приэтом АСУТП может следить забольшимчисломаварийныхситуаций,чемоператор.

Супервизорноеуправление.

В этой схеме АСУТП используется в замкнутомконтуре, т.е.установкирегуляторамзадаютсянепосредственносистемой.

  1. Управлениеавтоматизированной транспортно-складской . В такой системе ЭВМ выдаетадреса стеллажных ячеек, а система локальной автоматики кранов-штабелёров отрабатываетперемещение их в соответствии с этими адресами.
  2. Управлениеплавильными печами. ЭВМ вырабатывает значения уставок для управления режимамиработы электрических печей, а локальная автоматика по командам ЭВМ управляетпереключателями трансформаторов.
  3. Станки с числовымпрограммным управлением.

Непосредственное цифровое управление.

В режиме непосредственного цифрового управления (НЦУ) сигналы,используемые для приведения в действие управляющих органов, поступают из АСУТП,а регуляторы вообще исключаются из системы управления. Регуляторы – этоаналоговые вычислители, которые решают одноуравнение в реальном масштабе времени, например такого вида:

где y может обозначать положениеклапана; k0, k1, k2, k3 – параметры настройки,благодаря которым регулятор можно настроить на работу в различных режимах;X - разность междуизмеряемой величиной и уставкой. Если X не =0, то для выведения процесса на заданный режим требуетсяперемещение управляющего органа.

Если регуляториспользует для своей работы два первых члена уравнения, то он называется .Если используются три первых члена, то регулятор - пропорционально-интегральный ,и если - все члены уравнения, то регулятор - пропорционально-интегрально-дифференциальный .

Концепция НЦУпозволяет заменить регуляторы с задаваемой уставкой. Рассчитываются реальныевоздействия, которые в виде соответствующих сигналов передаются непосредственнона управляющие органы. Схема НЦУ показана на рисунке:

Введены обозначения:
УО – управляемый объект
Д – датчик.

Уставкивводятся в АСУ оператором или ЭВМ, выполняющей расчеты по оптимизации процесса.Оператор должен иметь возможность изменять уставки, контролировать некоторыеизбранные переменные, изменять диапазоны допустимого изменения измеряемыхпеременных, изменять параметры настройки, а также должен иметь доступ куправляющей программе. Одно из главных преимуществ режима НЦУ заключается ввозможности изменения алгоритмов управления путем внесенияизменений в управляющую программу. Основнойнедостаток схемы непосредственного цифрового управления – возможность системы при отказе ЭВМ.

Для общего ознакомления с системой предназначена структурная схема (рис. 6.2). Структурная схема - это схема, определяющая основные функциональные части изделия, их назначение и взаимосвязи .

Структура - это совокупность частей автоматизированной системы, на которые она может быть разделена по определенному признаку, а также пути передачи воздействия между ними. В общем случае любая система может быть представлена следующими структурами:

  • ? конструктивной - когда каждая часть системы представляет собой самостоятельное конструктивное целое;
  • ? функциональной - когда каждая часть системы предназначена для выполнения определенной функции (полные сведения о функциональной структуре с указанием контуров регулирования даются на схеме автоматизации);

Рис. 6.2.

? алгоритмической - когда каждая часть системы предназначена для выполнения определенного алгоритма преобразования входной величины, являющегося частью алгоритма функционирования.

Надо отметить, что для простых объектов автоматизации структурные схемы могут не приводиться.

Требования к данным схемам устанавливает РТМ 252.40 «Автоматизированные системы управления технологическими процессами. Структурные схемы управления и контроля». Согласно этому документу конструктивные структурные схемы содержат: технологические подразделения объекта автоматизации; пункты

контроля и управления, в том числе не входящие в состав разрабатываемого проекта, но имеющие связь с проектируемой системой; технический персонал и службы, обеспечивающие оперативное управление и нормальное функционирование технологического объекта; основные функции и технические средства, обеспечивающие их реализацию в каждом пункте контроля и управления; взаимосвязи между частями объекта автоматизации.

Элементы структурной схемы изображают в виде прямоугольников. Отдельные функциональные службы и должностные лица допускается изображать кружком. Внутри прямоугольников раскрывается структура данного участка. Функции автоматизированной системы управления технологическим процессом указываются условными обозначениями, расшифровка которых дается в таблице над основной надписью по ширине надписи. Взаимосвязь между элементами структурной схемы изображают сплошными линиями, слияния и разветвления - линиями с изломом. Толщина линий следующая: условных изображений - 0,5 мм, линий связи - 1 мм, остальных - 0,2...0,3 мм. Размеры элементов структурных схем не регламентируются и выбираются по усмотрению.

В примере (рис. 6.2) приведен фрагмент выполнения конструктивной схемы управления и контроля станции водоочистки. В нижней части раскрыты технологические подразделения объекта автоматизации; в прямоугольниках средней части - основные функции и технические средства пунктов местного управления агрегатами; в верхней части - функции и технические средства пункта централизованного управления станцией. Поскольку схема занимает несколько листов, обозначены переходы линий связи па последующие листы и показан обрыв прямоугольника, раскрывающего структуру объекта автоматизации.

На линиях связи между отдельными элементами системы управления может быть указано направление передаваемой информации или управляющих воздействий; при необходимости линии связи могут быть помечены буквенными обозначениями вида связи, па- пример: К - контроль, С - сигнализация, ДУ - дистанционное управление, АР - автоматическое регулирование, ДС - диспетчерская связь, ПГС - производственная телефонная (громкоговорящая) связь и т.п.

Развитие АСУ ТП на современном этапе связано с широким использованием для управления микропроцессоров и микроЭВМ, стоимость которых с каждым годом становится все более низкой по сравнению с общими затратами на создание систем управления. До появления микропроцессоров эволюция систем управления технологическими процессами сопровождалась увеличением степени централизации. Однако возможности централизованных систем теперь уже оказываются ограниченными и не отвечают современным требованиям по надежности, гибкости, стоимости систем связи и программного обеспече­ния.

Переход от централизованных систем управления к децентрализованным вызван также возрастанием мощности отдельных технологических агрегатов, их усложнением, повышением требований по быстродействию и точности к их работе. Централизация систем управления экономически оправдана при сравнительно небольшой информационной мощности (число каналов контроля и регулирования) ТОУ и его территориальной сосредоточенности. При большом числе каналов контроля, регулирования и управления, большой длине линий связи в АСУ ТП децентрализация структуры системы управления становится принципиальным методом повышения живучести АСУ ТП, снижения стоимости и эксплуатационных расходов.

Наиболее перспективным направлением децентрализации АСУ ТП следует признать автоматизированное управление процессами с распределенной архитектурой, базирующееся на функционально-целевой и топологической децентрализации объекта управления.

Функционально-целевая децентрализация - это разделение сложного процесса или системы на меньшие части - подпроцессы или подсистемы по функциональному признаку (например, переделы технологического процесса, режимы работы агрегатов и т. д.), имеющие самостоятельные цели функционирования.

Топологическая децентрализация означает возможность территориального (пространственного) разделения процесса на функционально-целевые подпроцессы. При оптимальной топологической де­централизации число подсистем распределенной АСУ ТП выбирается так, чтобы минимизировать суммарную длину линий связи, образующих вместе с локальными подсистемами управления сетевую структуру.

Технической основой современных распределенных систем управления, обусловившей возможность реализации таких систем, являются микропроцессоры и микропроцессорные системы.

Микропроцессорная система выполняет функции сбора данных, регулирования и управления, визуализации всей информации базы данных, изменения уставок, параметров алгоритмов и самих алгоритмов, опти­мизации и т.д. Использование микропроцессоров (в том числе микроЭВМ) для решения перечисленных задач дает возможность достичь следующих целей:

а) заменить аналоговые технические средства на цифровые там, где переход к цифровым средствам повышает точность, расширяет функциональные возможности и увеличивает гибкость систем управления;

б) заменить технические средства с жесткой логикой на программируемые (с возможностью изменения программы) устройства, или микроконтроллеры ;

в) заменить одну мини-ЭВМ системой из нескольких микроЭВМ, когда необходимо обеспечить децентрализованное управление производством или технологическим процессом с повышенной надежностью и живучестью или когда возможности мини-ЭВМ полностью не используются.

Микропроцессорные системы могут выполнять в подсистемах распределенной АСУ ТП все типовые функции контроля, измерения, регулирования, управления, представления информации оператору.

В распределенных АСУ ТП приняты в основном три топологические структуры взаимодействия подсистем: звездообразная (радиальная); кольцевая (петлевая); шинная (магистральная) или их комбинации. Организация связи с датчиками и исполнительными устройствами носит индивидуальный и преимущественно радиальный характер.

На рис.3.5 изображены варианты топологий распределенных АСУ ТП.

Рисунок 3.5 - Типовые структуры распределенных АСУ ТП:

а - радиальная, б - магистральная, в - кольцевая

Радиальная структура взаимодействия подсистем (рис.3.5,а) отражает традиционно применявшийся способ соединения устройств с выделенными линиями связи и характеризуется следующими особенностями:

а) существуют отдельные, не связанные между собой линии, объединяющие центральную подсистему (ЦП) с локальными системами автоматики ЛА i ;

б) технически просто реализуются устройства сопряжения УС 1 -УС m локальной автоматики. Центральное устройство связи УСЦ представляет собой набор модулей типа УС i по числу линий либо достаточно сложное устройство мультиплексирования каналов передачи информации;

в) обеспечиваются максимальные скорости обмена по отдельным линиям при достаточно высокой производительности вычисли­тельных устройств на уровне ЦП;

г) надежность подсистемы связи в значительной степени зависит от надежности и живучести технических средств ЦП. Выход из строя ЦП практически разрушает подсистему обмена, так как все потоки информации замыкаются через верхний уровень.

Распределенная система с радиальной структурой является двухуровневой системой, где на нижнем уровне в подсистемах реализуются необходимые функции контроля, регулирования, управления, а на втором - в ЦП координирующая микроЭВМ (или мини-ЭВМ) кроме координации работы микроЭВМ-сателлитов осуществляет оптимизацию задач управления ТОУ, распределение энергии, управляет технологическим процессом в целом, вычисляет технико-экономические показатели и т.п. Вся база данных в распределенной системе с радиальной структурой должна быть доступной координирующей микроЭВМ для прикладных программ управления на верхнем уровне. Вследствие этого координирующая микроЭВМ работает в режиме реального времени и должна управляться с помощью языков высокого уровня.

На рис.3.5 (б, в) изображены кольцевая и шинная топологии взаимодействия уровней. Эти структуры имеют ряд достоинств по сравнению с радиальной:

а) работоспособность подсистемы связи, включающей в себя канал и устройства связи, не зависит от исправности технических средств на уровнях автоматизации;

б) имеются возможности подключения дополнительных устройств и контроля всей подсистемы с помощью специальных средств;

в) необходимы значительно меньшие затраты кабельной продукции.

За счет обмена информацией между ЛА i через канал связи и УС («каждый с каждым») появляется дополнительная возможность динамического перераспределения функций координа­ции совместной работы подсистем ЛА по нижним уровням в случае выхода из строя ЦП. Шинная (в меньшей степени кольцевая) структура обеспечивает широковещательный режим обмена между подсистемами, что является важным преимуществом при реализации групповых команд управления. Вместе с тем шинная и кольцевая архитектура предъявляет уже значительно более высокие требования к «интеллекту» устройств сопряжения, а следовательно, повышенные единовременные затраты на реализацию базовой сети.

Сравнивая кольцевую и шинную топологии подсистемы связи, следует отметить, что организация кольцевой структуры менее дорогостоящая, чем шинная. Однако надежность всей подсистемы с кольцевой системой связи определяется надежностью каждого устройства сопряжения и каждого отрезка линий связи. Для повышения живучести необходимо применение двойных колец или дополнительных линий связи с обходными путями. Работоспособность физического канала передачи для шинной архитектуры с трансформаторной развязкой не зависит от исправности устройств сопряжения, однако, как и для кольца, выход из строя любого устройства сопряжения в наихудшем случае приводит к полностью автономной работе отказавшего узла подсистемы, т. е. к потере функции управления от уровня ЦП автоматикой отказавшего узла.

Явным методом повышения живучести всей системы автоматики в случае отказа устройств согласования в подсистеме связи является дублирование устройств согласования в узлах подсистемы. В кольцевой структуре такой подход уже подразумевается при организации двойных колец и обходных путей. Если надежность непрерывного физического канала для нижней топологии не вызывает сомнений, то возможно дублирование только устройств сопряжения без применения резервного магистрального кабеля.

Более дешевым способом повышения надежности подсистемы связи является использование комбинированных структур, сочетающих в себе достоинства радиальных и кольцевых (магистральных) топологий. Для кольца число радиальных связей может быть ограничено двумя-тремя линиями, реализация которых дает простое и недорогое решение.

Оценка таких показателей распределенных АСУ ТП, как экономические (затраты на кабельную продукцию, трассировку кабеля, на разработку или приобретение сетевых средств, в том числе устройства связи и т. п.), функциональные (использование групповых операций передачи, интенсивность обме­на, возможность обмена «каждый с каждым»), а также показатели унификации и возможности эволюции сети (возможность простого включения дополнительных узлов-абонентов, тенденции к применению в АСУ ТП) и показатели надежности сети (отказ канала связи и устройств связи или сопряжения), позволяет сделать следующие выводы:

а) наиболее перспективной в смысле развития и использования является магистральная организация подсистемы связи;

б) функциональные возможности магистральной топологии не уступают возможностям кольцевой и радиальной;

в) надежностные показатели магистральной структуры достаточно удовлетворительные;

г) магистральная топология распределенной АСУ ТП требует больших единовременных затрат на создание и внедрение канала связи и устройств сопряжения.

Во многом благодаря этим особенностям магистральной структуры и модульной организации аппаратных и программных средств в современных АСУ ТП магистрально-модульный принцип построения технического обеспечения нашел преимущественное распространение.

Применение микропроцессоров и микроЭВМ позволяет эффективно и экономно реализовать принцип функциональной и топологической децентрализации АСУ ТП. Тем самым можно значительно повысить надежность и живучесть системы, сократить дорогостоящие линии связи, обеспечить гибкость функционирования и расширить область применения в народном хозяйстве комплексов технических средств, основным элементом которых является микроЭВМ или микропроцессор. В таких распределенных системах управления большое значение приобретает стандартизация интерфейсов , т.е. установление и применение единых норм, требований и правил, гарантирующих информационное объединение технических средств в типовых структурах АСУ ТП.